

Total Marks: 32

Max. Time: 36 min.

Topic: Alcohols, Phenols and Ethers (Reaction Mechanism)

Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.3 Multiple choice objective ('-1' negative marking) Q.4

Match the Following (no negative marking) Q.5

Subjective Questions ('-1' negative marking) Q.6 to Q.7

Comprehension ('-1' negative marking) Q.8

M.M., Min. [9, 9]

(3 marks 3 min.)

(4 marks 4 min.)

(8 marks 10 min.)

[4, 4] [8, 10] [3, 3]

(4 marks 5 min.) (3 marks 3 min.)

[8, 10]

1. The correct leaving group ability order for nucleophilic substitution reaction is:

Ш

(A) I > IV > II > III

(C) IV > I > III > II

(B) II > IV > III > I

(D) I > IV > III > II

2. The strongest nucleophile as well as best leaving group amongst the following is:

4.* Which of the following represent correct order of Nucleophilicity is/are (In polar protic solvent):

- (A) F- < CI- < Br- < I-
- (B) PhS- > PhO-

(C)
$$CH_3O^- > OH^- > H - C - O^- > CH_3 - C - O^- > C_6H_5 - O^-$$

(D)
$$(CH_2)_2 \ddot{P} > (CH_2)_2 \ddot{N}$$

5. Match the properties of column II with the pair given in column I.

Column - I

(A)
$$NH_2 < N_2$$

(C)
$$CH_3-C-O^{\circ} < \bigcirc \bigcirc O^{\bullet}$$

Column - II

- (p) leaving group ability in S_N reaction
- (q) Nucleophilicity
- (r) basicity
- (s) Stability

- 6. Label each of the following solvent as Polar or non-polar:
 - (a) $CH_3 O CH_3$
- (b) Benzene
- (c) DMF

(d) CCI,

- (e) DMSO
- (f) H_oO
- (g) Cyclohexane
- (h) Acetone
- 7. Cyclohexene | is treated with each of the following reagents-
 - (a) O₂ followed by Zn/H₂O
- (b) O₃ followed by H₂O₃
- (c) hot. conc. KMnO₄/OH[®]
- (d) cold.dil. alkaline KMnO

(e) OsO₄/H₃O[⊕]

(f) PhCO₃H followed by H₃O[⊕]

Write product(s) obtained in each case.

Comprehension

8. Partial reduction of Alkynes:

Partial reduction (partial hydrogenation) of alkynes to alkenes can be carried out by

- (i) Lindllar's Reagent → [Pd + BaSO₄ + Quinoline + S]
- (ii) P-2 catalyst → (Ni₂B)
- Hydroboration- Reduction [(i) B₂H₂]/THF (ii) H₂O[⊕] or CH₂COOH] (iii)
- (iv) Birch reduction → (Li/liq, NH₃ or Na/liq.NH₂) (only non-terminal alkynes) First three are syn-addition but (iv)th is anti-addition. Write product(s) in each care:

(a)
$$CH_3-C \equiv C-CH_3 \xrightarrow{H_2+Pd+BasO_4+Quinoline+S} P$$

(b)
$$Ph-C \equiv C-Ph \xrightarrow{Li+liq.NH_3} Q$$

(c)
$$H_2 + Ni_2B$$
 R $Na + liq.NH_3$ S

(d) Ph–C = C–Me
$$\xrightarrow{\text{(i) B}_2H_6/\text{THF}}$$
 T

DPP No. #19

1.

(D)

- 2. (D)
- 3. (C)
- 4*. (A,B,D)

- (A p,s); (B p,q,s); (C q,r); (D p,s). 6.
- Polar (a, c, e, f, h); Non-polar (b, d, g)

- 7.
- COOH COOH
- COOH COOH

$$8. \qquad P \rightarrow \overset{CH_3}{\underset{H}{\longrightarrow}} C = C \overset{CH_3}{\underset{H}{\longrightarrow}} Q \rightarrow \overset{Ph}{\underset{H}{\longrightarrow}} C = C \overset{H}{\underset{Ph}{\longrightarrow}} ; R \rightarrow \overset{C}{\underset{H}{\longrightarrow}} ; S \rightarrow \overset{Ph}{\underset{H}{\longrightarrow}} C = C \overset{Me}{\underset{Ph}{\longrightarrow}} ; T \rightarrow \overset{Ph}{\underset{H}{\longrightarrow}} C = C \overset{Me}{\underset{Ph}{\longrightarrow}} ; R \rightarrow \overset{Ph}{\underset{H}{\longrightarrow}} ; R \rightarrow \overset{Ph}{\underset{H}{\longrightarrow}}$$

Hints & Solutions

DPP No. #19

- 1. (D) $O_2N \bigcirc \longrightarrow SO_3^{\Theta} > H_3C \bigcirc \longrightarrow SO_3^{\Theta} > CH_3COO^{\Theta} > OH$ Weaker bases are better leaving groups.
- 2. I is the strongest nucleophile as well as best leaving group.
- 4*. Nucleophilicity ∞ Size of donor atom (in group). Nucleophilicity ∞ $\frac{1}{\text{conjugation}}$
- 5. (A) -p,s; (B) -p,q,s; (C) -q,r; (D) -p,s.
- 6. Polar (a, c, e, f, h) Non-polar (b, d, g)
- 7. (a) CH=O (b) COOH (c) COOH (d) OH

8. $P \rightarrow CH_3$ $C=C \rightarrow H$ $Q \rightarrow H$ $C=C \rightarrow H$ $R \rightarrow C=C \rightarrow H$ $C=C \rightarrow H$